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Abstract

One considers a planar tunnel-crack embedded in an infinite isotropic brittle solid and loaded in mode 2þ 3 through
some uniform shear remote loading. The crack front is slightly perturbed within the crack plane, from its rectilinear

configuration. Part I of this work investigates the two following questions: Is there a wavy ‘‘bifurcated’’ configuration of

the front for which the energy release rate is uniform along it? Will any given perturbation decay or grow during

propagation? To address these problems, the distribution of the stress intensity factors (SIF) and the energy release rate

along the perturbed front is derived using Bueckner–Rice’s weight function theory. A ‘‘critical’’ sinusoidal bifurcated

configuration of the front is found; both its wavelength and the ‘‘phase difference’’ between the fore and rear parts of

the front depend upon the ratio of the initial (prior to perturbation of the front) mode 2 and 3 SIF. Also, it is shown

that the straight configuration of the front is stable versus perturbations with wavelength smaller than the critical one

but unstable versus perturbations with wavelength larger than it. This conclusion is similar to those derived by Gao and

Rice and the authors for analogous problems.
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1. Introduction

Consider a plane crack with arbitrary contourF, embedded in an arbitrary isotropic elastic body X. Let
M denote the generic point ofF. If the crack advances, under constant loading, by a small distance daðMÞ
within the plane in the direction perpendicular to the front F, the variations dKmðMÞ, m ¼ 1, 2, 3 of the
stress intensity factors (SIF) at point M are given, to first order in the perturbation, by the following
formulae:
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dKmðMÞ ¼ ½dKmðMÞ�daðM 0Þ�daðMÞ þ NmnKnðMÞ ddaðMÞ
ds

þ PV
Z
F

ZmnðX;M ;M 0ÞKnðM 0Þ½daðM 0Þ 	 daðMÞ�ds0;

ð1Þ
where s, s0 denote the curvilinear abscissae along the front of points M and M 0 respectively, and Einstein’s
implicit summation convention is employed for the index n ¼ 1; 2; 3. In these equations, the KnðMÞ are the
initial SIF (prior to perturbation of the crack front). The ½dKmðMÞ�daðM 0Þ�daðMÞ are the values of the dKmðMÞ
for a uniform advance equal to daðMÞ (daðM 0Þ � daðMÞ; 8M 0 2 F). The Nmn are the components of a
universal (geometry-independent) operator. They are given by (other components being zero):

N23 ¼ 	 2

2	 m
; N32 ¼

2ð1	 mÞ
2	 m

; ð2Þ

where m denotes Poisson’s ratio. The ZmnðX;M ;M 0Þ are the components of a non-universal (geometry de-
pendent, whence the argument ‘‘X’’) operator Z called the fundamental kernel in the sequel, since it appears
as the kernel of the principal value (PV) integral. Some general properties of these functions are as follows:

ZmnðX;M ;M 0Þ ¼ ZnmðX;M 0;MÞ; ðm; nÞ ¼ ð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð1; 2Þ;
Z3nðX;M ;M 0Þ ¼ ð1	 mÞZn3ðX;M 0;MÞ; n ¼ 1; 2;

ð3Þ

lim
M 0!M

Z11ðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 1

2p
;

lim
M 0!M

Z22ðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 2	 3m
2pð2	 mÞ ;

lim
M 0!M

Z33ðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 2þ m
2pð2	 mÞ ;

lim
M 0!M

ZmnðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 0; m 6¼ n;

ð4Þ

where DðM ;M 0Þ denotes the Cartesian distance between the points M and M 0. Note that Eq. (4) warrant
that the integral in Eq. (1) makes sense as a Cauchy principal value.
Eq. (1) was first established by Gao and Rice for various particular cases: the half-plane crack in mode 1

(Rice, 1985) and 1þ 2þ 3 (Gao and Rice, 1986), the circular connection in mode 1 (Gao and Rice, 1987a),
the penny-shaped crack in mode 1 (Gao and Rice, 1987b) and 1þ 2þ 3 (Gao, 1988). In all these papers, the
fundamental kernel did not appear in the generic name Z but in an explicit form depending on the con-
figuration studied. Eq. (1) was then extended by Rice (1989) and Nazarov (1989) to arbitrary planar crack
shapes in mode 1, and finally by Mouchrif (1994) and Leblond et al. (1999) to cracks of completely ar-
bitrary, non-planar shapes including possible kink angles and arbitrary combinations of modes. In these
more general cases, since the fundamental kernel depends on the geometry which was supposed to be more
or less arbitrary, it appeared under a generic form; Z is the notation used in Leblond et al. (1999). The
values of the Nmn given by (2) can be deduced from the works of Rice (1985), Gao and Rice (1986, 1987a,b)
and Gao (1988). Finally, properties (3) and (4) were proved for arbitrary plane cracks loaded in pure mode
1 by both Rice (1989) and Nazarov (1989), and for arbitrary curved crack geometries and mixed mode
conditions by Mouchrif (1994) and Leblond et al. (1999). All these works heavily relied on the use of
Bueckner–Rice’s weight-function theory (Bueckner, 1970; Rice, 1972; Rice, 1985).
In all the above-mentioned special cases, the problems of configurational bifurcation and stability of the

crack front during in-plane propagation, under uniform remote loading, could be addressed by using
the explicit expression of Z in Eq. (1) to calculate the energy release rate along a slightly perturbed front.
The bifurcation problem was the following one: is there, in addition to the trivial, initial (straight or circular)
configuration of the crack front, some non-trivial, wavy configuration for which the energy release rate
is still uniform? The stability problem was as follows: if the crack front is slightly perturbed within the crack
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plane, will the perturbation decay or increase as propagation proceeds? This issue could be addressed by
considering that the perturbation decayed if the energy release rate was lowest at the most advanced parts
of the crack front, and that it grew if the opposite held true.
For half-plane cracks and internal circular cracks under mixed mode loadings, and for circular con-

nections under mode 1 loading, Rice (1985), Gao and Rice (1986, 1987a,b) and Gao (1988) have shown that
there is a sinusoidal bifurcated configuration of ‘‘critical’’ wavelength kc, and that stability prevails for
perturbations of wavelength smaller than kc and instability for wavelengths larger than it. An analogous
result has been established for interface half-plane cracks by Lazarus and Leblond (1998). However, for half-
plane cracks, as pointed out by Gao and Rice (1986) because of the lack of a characteristic lengthscale in the
problem, the somewhat deceiving conclusion is only that ‘‘planar crack growth should be configurationally
stable to perturbations involving wavelengths that are small compared to overall body or crack dimensions’’.
Leblond et al. (1996) have introduced a characteristic lengthscale by studying the tunnel-crack under mode 1
loading. They have shown that the critical wavelength kc is a characteristic multiple of the crack width and
that the critical bifurcated configuration is symmetric with respect to the middle axis of the crack.
The aim of Part I of this work is to consider the same bifurcation and stability problems for the tunnel-

crack as Leblond et al. (1996), but for mixed mode (2þ 3) shear loadings. Propagation is assumed to be
coplanar; this is reasonable provided that the crack is channeled along a planar surface of low fracture
resistance, which can be the case for instance for a geological fault. Also, propagation is considered to be
governed by the local energy release rate, the critical value of which is assumed to be independent of mode
combination. Again, this is reasonable (Rice, private communication) for coplanar propagation along a
weak surface, since energy dissipation occurs through the same physical mechanisms (shear and friction) in
both modes 2 and 3.
Bifurcation and stability issues of course depend on the geometry considered. Therefore some general

properties of the operator Z for a tunnel-crack, are needed as a prerequisite. These properties are ex-
pounded in Section 2. They allow us to derive, in Section 3, an expression of the variation of the energy
release rate due to a small wavy perturbation of the crack front that forms the basis of our discussion of
bifurcation and stability problems. In Section 4, it is then shown that there is a critical, sinusoidal bifur-
cated configuration of the front. Its wavelength is a multiple of the width of the crack and depends upon the
ratio of the mode 2 and 3 initial SIF (prior to perturbation of the front). Also, the bifurcated configuration
is symmetric with respect to the middle axis of the crack only for initial conditions of pure mode 2 or 3; for
mixed mode conditions, there is a ‘‘phase difference’’ between the bifurcated configurations of the fore and
rear parts of the crack front. The stability issue is addressed, in Section 5, only in some simple, special cases
where the extrema of the perturbation and the energy release rate coincide. It is shown that in the most
interesting case, stability prevails for perturbations of wavelength smaller than the critical one.
It should be noticed that a significant part of the analysis of bifurcation and stability can be carried out

using only the properties of the fundamental kernel Z expounded in Section 2, that is without explicitly
knowing its components. However, such an explicit knowledge is of course necessary for a fully quanti-
tative analysis. But the calculation of Z is long and complex; for reasons of compactness of the present
paper, we shall therefore merely accept its results here and postpone its detailed presentation to Part II.

2. General properties of the fundamental kernel Z

2.1. Definitions and notations

The situation considered is depicted in Fig. 1. The crack lies on the plane y ¼ 0 and the fore and rear
parts of the front are parallel straight lines of equation ðx ¼ aÞ and ðx ¼ 	aÞ respectively. The position of a
point M of the front is specified through the Cartesian coordinate z�, where the upper index indicates
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whether the point considered belongs to the fore ðx ¼ aÞ or rear part ðx ¼ 	aÞ of the front. The SIF at a
pointM of the front are defined with respect to the local set of axes ðx; y; zÞ ifM belongs to the line ðx ¼ aÞ
and ð	x;	y; zÞ if it belongs to the line ðx ¼ 	aÞ.
The only geometric parameter in the problem is the half-width a of the crack; it follows that the influence

of the argument ‘‘X’’ upon the fundamental kernel ZðX;M ;M 0Þ in fact reduces to a dependence of this
operator upon a. Furthermore, the problem is invariant in the direction z of the crack front and simple
dimensional considerations in Eq. (1) show that ZðX;M ;M 0Þ � Zða; z�; z0�Þ is positively homogeneous of
degree 	2 with respect to its three arguments. Combining these features with the obvious symmetry with
respect to the central axis Oz, one concludes that the fundamental kernel can be written in the following
form:

Zða; zþ; z0þÞ ¼ Zða; z	; z0	Þ � fððz0 	 zÞ=aÞ
ðz0 	 zÞ2

; ð5Þ

Zða; zþ; z0	Þ ¼ Zða; z	; z0þÞ � gððz0 	 zÞ=aÞ
a2

; ð6Þ

where, in virtue of Eq. (4), the components of operators f and g are bounded for z0 ! z and verify the
following properties:

lim
z0!z

f11ððz0 	 zÞ=aÞ ¼ 1

2p
;

lim
z0!z

f22ððz0 	 zÞ=aÞ ¼ 2	 3m
2pð2	 mÞ ;

lim
z0!z

f33ððz0 	 zÞ=aÞ ¼ 2þ m
2pð2	 mÞ ;

lim
z0!z

fmnððz0 	 zÞ=aÞ ¼ 0; m 6¼ n:

ð7Þ

Another basic property of f and g is that:

f12 ¼ f21 ¼ f13 ¼ f31 ¼ g12 ¼ g21 ¼ g13 ¼ g31 � 0: ð8Þ
This is because, as is well-known, tensile and shear problems are uncoupled for a planar crack with an
arbitrary contour in an infinite body; that is, if K2 � 0 and K3 � 0 (tensile problem), the variations dK2 and
dK3 are zero when the crack propagates within its plane; and similarly if K1 � 0 (shear problem), dK1 � 0.

Fig. 1. Tunnel-crack of width 2a.
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Furthermore, elementary considerations of symmetry with respect to the plane z ¼ 0 show that f11, f22,
f33, g11, g22, g33 are even, and f23, g23, f32 and g32 are odd functions. Eqs. (3), (5) and (6) then imply that (with
u � ðz0 	 zÞ=a):

f32ðuÞ ¼ ð1	 mÞf23ð	uÞ ¼ 	ð1	 mÞf23ðuÞ;
g32ðuÞ ¼ ð1	 mÞg23ð	uÞ ¼ 	ð1	 mÞg23ðuÞ:

ð9Þ

Therefore, the fundamental kernel Z is entirely determined by the eight components 11, 22, 33, 23 of the
operators f and g.

2.2. Expressions of the dKm, m ¼ 2; 3 in terms of f and g

As already mentioned, for the tunnel-crack under shear loading, dK1 � 0. Furthermore, for m ¼ 2, 3,
with the notations (5) and (6) and because of properties (8) and (9), the fundamental Eq. (1) reads for a
point MþðzþÞ belonging to the line ðx ¼ aÞ:

dK2ðzþÞ ¼ ½dK2ðzþÞ�daðz0�Þ�daðzþÞ 	
2

2	 m
K3ðzþÞ

dda
dz

ðzþÞ

þ PV
Z þ1

	1
f22

z0 	 z
a

� �
K2ðz0þÞ

�
þ f23

z0 	 z
a

� �
K3ðz0þÞ

�
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0

þ
Z þ1

	1
g22

z0 	 z
a

� �
K2ðz0	Þ

�
þ g23

z0 	 z
a

� �
K3ðz0	Þ

�
daðz0	Þ 	 daðzþÞ

a2
dz0; ð10Þ

dK3ðzþÞ ¼ ½dK3ðzþÞ�daðz0�Þ�daðzþÞ þ
2ð1	 mÞ
2	 m

K2ðzþÞ
dda
dz

ðzþÞ

þ PV
Z þ1

	1
f33

z0 	 z
a

� �
K3ðz0þÞ

�
	 ð1	 mÞf23

z0 	 z
a

� �
K2 z0þ

� �� daðz0þÞ 	 daðzþÞ
ðz0 	 zÞ2

dz0

þ
Z þ1

	1
g33

z0 	 z
a

� �
K3ðz0	Þ

�
	 ð1	 mÞg23

z0 	 z
a

� �
K2ðz0	Þ

�
daðz0	Þ 	 daðzþÞ

a2
dz0: ð11Þ

The values of dK2ðz	Þ and dK3ðz	Þ, for a point M	ðz	Þ belonging to the line ðx ¼ 	aÞ, are given by the same
expressions with the obvious substitutions zþ ! z	, z0� ! z0�.

3. Perturbation of the tunnel-crack under uniform remote shear loading

Let the tunnel-crack be subjected to some uniform remote plane (sp) and antiplane (sa) shear loading so
that Cauchy stress tensor at infinity reads r1 ¼ spðey!� ex!þ ex!� ey!Þ þ saðey!� ez!þ ez!� ey!Þ. Then the
SIF, prior to any perturbation of the front, are given by:

K1ðz�Þ ¼ 0; K2ðz�Þ ¼ sp
ffiffiffiffiffiffi
pa

p
� K2; K3ðzþÞ ¼ sa

ffiffiffiffiffiffi
pa

p
� Kþ

3 ; K3ðz	Þ ¼ 	sa
ffiffiffiffiffiffi
pa

p
¼ 	Kþ

3 � K	
3 :

ð12Þ
The variation of the SIF will be studied for three types of perturbation of the front: translation, rotation
and sinusoidal undulation (Fig. 2). The study of the translation will serve to simplify (in the case of a
uniform remote loading), the expressions (10) and (11) of dK2ðzþÞ and dK3ðzþÞ. The study of the rotation
will allow the calculation of some integrals involving operators f and g. These integrals are given here
although they will be needed only in Part II, because the reasoning is similar to that for the translation. The
study of the sinusoidal undulation is a necessary prerequisite for that of the bifurcation and stability
problems.
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3.1. Translation of the front

If both parts of the front move by a uniform amount da as in Fig. 2(a), the new SIF are those of a tunnel-
crack of width 2ðaþ daÞ subjected to the remote loading r1. Hence to first order in da=a:

½dK2ðz�Þ�daðz0�Þ�da ¼ K2
da
2a

;

½dK3ðzþÞ�daðz0�Þ�da ¼ Kþ
3

da
2a

; ½dK3ðz	Þ�daðz0�Þ�da ¼ K	
3

da
2a

:

ð13Þ

If now the sole rear part of the front moves by an amount da as in Fig. 2(b), the new SIF are those of a
tunnel-crack of width 2aþ da subjected to the remote loading r1. Thus dK2ðz�Þ ¼ ðK2daÞ=ð4aÞ and
dK3ðz�Þ ¼ ðK�

3 daÞ=ð4aÞ. Eqs. (10) and (11) then yield:Z þ1

	1
g22ðuÞdu ¼ 	

Z þ1

	1
g33ðuÞdu ¼ 1

4
;

Z þ1

	1
g23ðuÞdu ¼ 0: ð14Þ

The last relation was obvious a priori since g23 is odd.

Fig. 2. In-plane perturbations of the tunnel-crack under uniform remote shear loading. (a) Translation of both parts of the front. (b)

Translation of the rear part of the front. (c) Rotation about the Oy axis. (d) Wavy front.

4426 V. Lazarus, J.-B. Leblond / International Journal of Solids and Structures 39 (2002) 4421–4436



By using Eqs. (13) and (14), the relations (10) and (11) can be rewritten in the following slightly sim-
plified form (for a uniform remote loading):

dK2ðzþÞ ¼
K2
4

daðzþÞ
a

	 2

2	 m
Kþ
3

dda
dz

ðzþÞ þ K2PV
Z þ1

	1
f22

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0

þ Kþ
3

Z þ1

	1
f23

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0 þ K2

Z þ1

	1
g22

z0 	 z
a

� �
daðz0	Þ

a2
dz0

þ K	
3

Z þ1

	1
g23

z0 	 z
a

� �
daðz0	Þ

a2
dz0; ð15Þ

dK3ðzþÞ ¼
Kþ
3

4

daðzþÞ
a

þ 2ð1	 mÞ
2	 m

K2
dda
dz

ðzþÞ þ Kþ
3 PV

Z þ1

	1
f33

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0

	 ð1	 mÞK2
Z þ1

	1
f23

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0 þ K	

3

Z þ1

	1
g33

z0 	 z
a

� �
daðz0	Þ

a2
dz0

	 ð1	 mÞK2
Z þ1

	1
g23

z0 	 z
a

� �
daðz0	Þ

a2
dz0; ð16Þ

where the ‘‘PV’’ symbols have been canceled in the integrals involving f23 since this function is odd.
The expressions of dK2ðz	Þ and dK3ðz	Þ are similar with the substitutions zþ ! z	, z0� ! z0�, K�

3 ! K�
3 .

3.2. Rotation of the front

Let us suppose that the perturbation is a rotation of both parts of the front about ey! as in Fig. 2(c) so
that daðzþÞ ¼ dh:z and daðz	Þ ¼ 	dh:z, jdhj � 1. Then to first order in dh, the new SIF are those of a
tunnel-crack of width 2a subjected to the uniform remote loading ðsp 	 dh:saÞðey!� eu!þ eu!� ey!Þþ
ðsa þ dh:spÞðey!� ew!þ ew!� ey!Þ where eu! and ew! are defined in Fig. 2(c). Thus dK2ðz�Þ ¼ 	dh:Kþ

3 and
dK3ðz�Þ ¼ �dh:K2. Relations (15) and (16) then yield a system of two equations in the two unknown in-
tegrals

Rþ1
	1 f23ðuÞðdu=uÞ and

Rþ1
	1 ug23ðuÞdu, the solution of which reads:

Z þ1

	1
f23ðuÞ

du
u

¼ 	 m2

2ð2	 mÞð1	 mÞ ; ð17Þ

Z þ1

	1
ug23ðuÞdu ¼ m

2ð1	 mÞ : ð18Þ

3.3. Wavy perturbation of the crack front

Let us now suppose that, as in Fig. 2(d):

daðzþÞ ¼ aþ cosðkþzþ /þÞ
daðz	Þ ¼ a	 cosðk	zþ /	Þ
jaþj
a

� ja	j
a

� 1:

8>>><
>>>:

ð19Þ
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Then, by substituting Eq. (19) in (15) and (16) and using the notation

p� � k�a; ð20Þ

(pþ, p	 are ‘‘reduced’’, dimensionless wavevectors), one finds to first order in ða�=aÞ, after a lengthy but
straightforward calculation:

dK2ðzþÞ ¼
aþ

a
cosðkþzþ /þÞK2�ff22ðpþÞ þ

aþ

a
sinðkþzþ /þÞKþ

3 i
�ff23ðpþÞ þ

a	

a
cosðk	zþ /	ÞK2ĝg22ðp	Þ

þ a	

a
sinðk	zþ /	ÞK	

3 iĝg23ðp	Þ; ð21Þ

dK3ðzþÞ ¼
aþ

a
cosðkþzþ /þÞKþ

3
�ff33ðpþÞ 	 ð1	 mÞ aþ

a
sinðkþzþ /þÞK2i�ff23ðpþÞ

þ a	

a
cosðk	zþ /	ÞK	

3 ĝg33ðp	Þ 	 ð1	 mÞ a	

a
sinðk	zþ /	ÞK2iĝg23ðp	Þ; ð22Þ

the expressions of dK2ðz	Þ and dK3ðz	Þ being given by the same formulae with the obvious substitutions
� $ � for the superscripts of a, k, p, / and K3. In these expressions, the functions �ffmn are defined as:

�ffmnðpÞ ¼
1

4
þ PV

Z þ1

	1
fmnðuÞ

eipu 	 1
u2

du ¼ 1
4
þ 2

Z þ1

0

fmnðuÞ
cos pu	 1

u2
du; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ;

�ff23ðpÞ ¼ 	 2

2	 m
ip þ PV

Z þ1

	1
f23ðuÞ

eipu 	 1
u2

du ¼ 	 2

2	 m
ip þ 2i

Z þ1

0

f23ðuÞ
sin pu
u2

du;

ð23Þ

(where use has been made of the parity properties of the fmn). Also, the functions ĝgmn are the Fourier
transforms of the gmn defined as:

ĝgmnðpÞ ¼
Z þ1

	1
gmnðuÞeipu du;

)
ĝgmnðpÞ ¼ 2

Z þ1

0

gmnðuÞ cos pudu; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ

ĝg23ðpÞ ¼ 2i
Z þ1

0

g23ðuÞ sin pudu;

8>>><
>>>:

ð24Þ

(where use has been made of the parity properties of the gmn).
Notice that �ff22, �ff33, ĝg22, ĝg33, i�ff23, iĝg23 are real so that the expressions (21) and (22) of dK2ðzþÞ and dK3ðzþÞ

are real in spite of the presence of the imaginary number i.

4. Study of the bifurcation problem

Any sinusoidal perturbation of the crack front may be written, for a suitable choice of the origin, in the
form (19) with /þ ¼ 0, /	 ¼ / 2 ½	p; pÞ, and aþ, a	, pþ, p	 > 0. The bifurcation problem consists in
looking whether there are some constants (aþ, a	, pþ, p	, /) for which the variation of energy release rate dG
due to the perturbation (19) vanishes. (In fact, what is really to be investigated is dG	 dGc where Gc denotes
the critical value of G; but this is equivalent to studying dG since Gc is assumed to be a constant, independent
of mode combination). Such a set of variables (aþ, a	, pþ, p	, /) will be called a bifurcation mode.
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4.1. Expression of the variation of the energy release rate

Expanding Irwin’s formula to first order in ða�=aÞ, one finds that the variation of the energy release rate
due to the perturbation (19) is:

dGðz�Þ ¼ 2 1	 m2

E
K2dK2ðz�Þ

�
þ 1

1	 m
K�
3 dK3ðz�Þ

�
; ð25Þ

where E is Young’s modulus and dK2ðz�Þ and dK3ðz�Þ are given by Eqs. (21) and (22). Hence, substituting 0
for /þ and / for /	 in these equations, one finds that

dGðzþÞ ¼ 2 1	 m2

E
K22
a

aþF ðpþÞ cosðkþzÞf þ a	½Gðp	Þ cos/ þ Hðp	Þ sin/� cosðk	zÞ

þ a	½Hðp	Þ cos/ 	 Gðp	Þ sin/� sinðk	zÞg; ð26Þ

dGðz	Þ ¼ 2 1	 m2

E
K22
a

a	F ðp	Þ cos k	zðf þ /Þ þ aþ½GðpþÞ cos/ þ HðpþÞ sin/� cosðkþzþ /Þ

þ aþ½ 	 HðpþÞ cos/ þ GðpþÞ sin/� sinðkþzþ /Þg: ð27Þ

In these expressions F ðpÞ � F ðp;Kþ
3 =K2Þ, GðpÞ � Gðp;Kþ

3 =K2Þ, HðpÞ � Hðp;Kþ
3 =K2Þ are the quantities given

by:

F ðpÞ ¼ �ff22ðpÞ þ
1

1	 m
Kþ2
3

K22
�ff33ðpÞ;

GðpÞ ¼ ĝg22ðpÞ 	
1

1	 m
Kþ2
3

K22
ĝg33ðpÞ;

HðpÞ ¼ 	2iK
þ
3

K2
ĝg23ðpÞ:

ð28Þ

It was noticed by Gao and Rice (1986), Gao (1988), Lazarus and Leblond (1998) that the extrema of the
perturbation of the front and of the energy release rate coincide for a half-plane or a penny-shaped crack in
an homogeneous body, and for an interface half-plane crack. One could therefore speculate that this was a
‘‘general property’’. However, since the terms proportional to sinðk	zÞ and sinðkþzþ /Þ do not vanish in
the expressions (26) and (27) of dGðz�Þ, this property does not hold for the tunnel-crack.

4.2. Graphs of functions �ff22, �ff33, ĝg22, ĝg33, ĝg23

Knowledge of the functions �ff22, �ff33, ĝg22, ĝg33, ĝg23 now becomes necessary to pursue the discussion. For the
sake of shortness of the present paper, the rather involved calculation of these functions is postponed to
Part II and we shall only give here the results obtained, for the value m ¼ 0:3 of Poisson’s ratio, in the form
of graphs. (see Figs. 3 1 and 4.)

4.3. Case where pþ 6¼ p	

If pþ 6¼ p	, for dGðz�Þ to be zero for all zþ and z	, the terms proportional to cosðkþzÞ, cosðk	zÞ, sinðk	zÞ
in the expression (26) of dGðzþÞ, and those proportional to cosðk	zþ /Þ, cosðkþzþ /Þ, sinðkþzþ /Þ in the

1 Since �ff23 does not appear in expressions (26) and (27) for dGðz�Þ, this function is not given in Fig. 3.
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expression (27) of dGðz	Þ must be individually zero. Since we are looking for non-trivial solutions, one of
the coefficients aþ, a	, say aþ, must be non-zero. The preceding conditions then implies:

F ðpþÞ ¼ 0; GðpþÞ cos/ þ HðpþÞ sin/ ¼ 0; HðpþÞ cos/ 	 GðpþÞ sin/ ¼ 0
and thus F ðpþÞ ¼ GðpþÞ ¼ HðpþÞ ¼ 0. Now it is clear from definitions (28) and Figs. 3 and 4 that F ðpþÞ
only vanishes for some pþ 6¼ 0 whereas HðpþÞ only vanishes for pþ ¼ 0. Thus these conditions cannot be
satisfied for a single pþ. Hence:

There is no bifurcation mode with pþ 6¼ p	: ð29Þ

4.4. Case where pþ ¼ p	 � p

If pþ ¼ p	 � p, for dGðz�Þ to be zero for all zþ and z	, the terms proportional to cosðkzÞ and sinðkzÞ in
the expression of dGðzþÞ, and those proportional to cosðkzþ /Þ and sinðkzþ /Þ in the expression of dGðz	Þ
must be zero. This implies that:

Fig. 3. Functions �ffmnðpÞ.

Fig. 4. Functions ĝgmnðpÞ.
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aþF ðpÞ þ a	ðGðpÞ cos/ þ HðpÞ sin/Þ ¼ 0
a	F ðpÞ þ aþðGðpÞ cos/ þ HðpÞ sin/Þ ¼ 0
HðpÞ cos/ 	 GðpÞ sin/ ¼ 0:

8<
:

The first two equations imply that aþ=a	 ¼ a	=aþ ) aþ ¼ �a	. Since we have chosen aþ and a	 to be
positive:

aþ ¼ a	 � a 6¼ 0
F ðpÞ þ GðpÞ cos/ þ HðpÞ sin/ ¼ 0
HðpÞ cos/ 	 GðpÞ sin/ ¼ 0:

8<
: ð30Þ

Using second and third equations of (30), one gets cos/ ¼ 	F ðpÞGðpÞ=ðG2ðpÞ þ H 2ðpÞÞ, sin/ ¼
	F ðpÞHðpÞ=ðG2ðpÞ þ H 2ðpÞÞ. Use of the relation cos2 / þ sin2 / ¼ 1 then yields

F ðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðpÞ þ H 2ðpÞ

p
cos/ ¼ 	GðpÞ=F ðpÞ; sin/ ¼ 	HðpÞ=F ðpÞ:

�
ð31Þ

For a given ratio Kþ
3 =K2, first relation of (31) is an equation on p the solution of which represents the

‘‘critical reduced wavevector’’. It can be solved numerically for each value of Kþ
3 =K2 using values of the

functions �ffmn and ĝgmn given in Figs. 3 and 4. The second equation of Eq. (31) then define the corresponding
‘‘critical phase difference’’ between the configurations of the fore and rear parts of the front.
Since �ff22ð0Þ ¼ �ff33ð0Þ ¼ ĝg22ð0Þ ¼ 	ĝg33ð0Þ ¼ 1=4 and ĝg23ð0Þ ¼ 0 (see Eqs. (14), (23) and (24)), F ð0Þ ¼

Gð0Þ ¼ ð1þ ð1=ð1	 mÞÞðKþ2
3 =K22 ÞÞ=4 and Hð0Þ ¼ 0 (see Eq. (28)). Therefore, if one chooses the sign þ in

first equation of (31), one finds that p ¼ 0, / ¼ 	p is a solution. This is a trivial bifurcation mode which
merely corresponds to some translation of the crack in the x-direction. One can check numerically that this
is the only one for the choice of the sign þ in first equation of (31).
However, if one chooses the sign 	, the resolution gives another unique, non-zero solution pc and a

corresponding angle /c, which define a non-trivial bifurcation mode. Hence there is a single such mode
defined by the following equations:

F ðpcÞ ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðpcÞ þ H 2ðpcÞ

p
cos/c ¼ 	GðpcÞ=F ðpcÞ; sin/c ¼ 	HðpcÞ=F ðpcÞ:

�
ð32Þ

Fig. 5. Critical reduced wavelength versus the ratio of the initial SIF.
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Figs. 5 and 6 2 represent the ‘‘critical reduced wavelength’’ kc=a � 2p=pc and the critical phase difference /c
of the bifurcated mode as functions of Kþ

3 =K2, for m ¼ 0:3. Kþ
3 =K2 is assumed here to be positive; it is

obvious that if it changes sign, kc remains unchanged and /c changes sign. One sees that the critical
wavelength is larger in pure mode 3 than in pure mode 2. Also, the critical phase difference vanishes in pure
mode 2 and mode 3, that is, the bifurcated configuration becomes symmetric with respect to the middle axis
Oz of the crack in these cases (see Fig. 7(a)). It is recalled that the bifurcation mode was also found to be
symmetric for a pure mode 1 loading (Leblond et al., 1996). Moreover /c 2 ð	p=2; p=2Þ, hence the bi-
furcated mode is always closer to a symmetric configuration (/ ¼ 0, Fig. 7(a)) than to an antisymmetric one
(/ ¼ 	p, Fig. 7(b)).

Fig. 6. Critical phase difference versus the ratio of the initial SIF.

Fig. 7. Symmetric and antisymmetric modes.

2 Note that, in spite of appearances, the curve in Fig. 6 is not symmetric with respect to the vertical line Kþ
3 =K2 ¼ 1; for instance

/c ’ 7:89� for Kþ
3 =K2 ¼ 0:1 and /c ’ 7:38� for Kþ

3 =K2 ¼ 10.
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5. Study of the stability problem

The question here is as follows: if the crack front is slightly perturbed within the crack plane, will the
perturbation increase (instability) or decay (stability) in time? Equivalently, will the crack front depart
more and more from straightness or tend to again become straight? But since not only the amplitude but
also the shape of the perturbation change during propagation, the very notions of ‘‘increase’’ and ‘‘decay’’
of the perturbation are ambiguous and prone to problems of definition, so that the stability issue is
complex.
In fact, we shall deal with it only in a special case for which the discussion becomes very easy and in line

with previous ones of Gao and Rice cited above. This case corresponds to wavy perturbations with
pþ ¼ p	 � p, aþ ¼ a	 � a and / given by third equation of (30). Indeed the terms proportional to sinðkzÞ
and sinðkzþ /Þ in the expressions (26) and (27) of dGðzþÞ and dGðz	Þ then vanish so that the extrema of
dGðzþÞ coincide with those of daðzþÞ, and similarly for those of dGðz	Þ and daðz	Þ. One then simply gets
stability if the maxima of dGðzþÞ and dGðz	Þ correspond to the minima of daðzþÞ and daðz	Þ, and instability
if they correspond to the maxima of daðzþÞ and daðz	Þ. This holds true whatever the propagation law
governed by the energy release rate provided that it is independent of mode combination, and in particular
for brittle fracture governed by the criterion G ¼ Gc if Gc is independent of Kþ

3 =K2.
Stability then prevails if the cofactors of cosðkzÞ and cosðkzþ /Þ in the expressions of dGðzþÞ and dGðz	Þ

are negative 3:

Stability() S � F þ G cos/ þ H sin/ < 0; tan/ ¼ H=G: ð33Þ

Now,

tan/ ¼ H=G ) ðcos/; sin/Þ ¼ �ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
) F þ G cos/ þ H sin/ ¼ F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
:

Therefore the stability condition (33) may be written as follows:

Stability()
S � F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
< 0 and ðcos/; sin/Þ ¼ ðG;HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ H 2
p

or

S � F 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
< 0 and ðcos/; sin/Þ ¼ 	 ðG;HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ H 2
p :

8>>><
>>>:

ð34Þ

Thus we should distinguish between the cases ðcos/; sin/Þ ¼ ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
and ðcos/; sin/Þ ¼

	ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
:

• The more interesting case corresponds to ðcos/; sin/Þ ¼ ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
. Then, for each ratio Kþ

3 =K2,
using the values of the functions �ffmn and ĝgmn given in Figs. 3 and 4, one can check that S is positive for
p < pc and negative for p > pc: for instance, for p ¼ 0, F ¼ G ¼ ð1þ ð1=ð1	 mÞÞðKþ2

3 =K22 ÞÞ=4 > 0 and
H ¼ 0 (see above) so that S ¼ F þ G > 0, and for p ! þ1, F ! 	1, G ! 0, H ! 0, so that
S � F < 0; also for p ¼ pc, S ¼ 0 by first equation of (32). Hence stability prevails for p > pc.

• In the less interesting case where ðcos/; sin/Þ ¼ 	ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
, S is negative for all ratios Kþ

3 =K2
and values of p; for instance, for p ¼ 0, S ¼ F 	 G ¼ 0, for p ! þ1, S � F < 0, and for p ¼ pc,
S ¼ 	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
< 0 by first equation of (32). Thus stability always prevails.

3 In these equations and the sequel, indications of dependence of functions F, G, H and S upon p are left out for the sake of

simplicity.
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Now consider an unstable configuration, having thus p < pc and ðcos/; sin/Þ ¼ ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
.

Then k=a � 2p=p > kc=a � 2p=pc > 4:5 (see Fig. 5)) p < 1:4) 	ĝg33 > 0 (see Fig. 4)) G > 0 (see second
equation of (28) and Fig. 4) ) cos/ > 0) / 2 ð	p=2; p=2Þ. On the other hand, consider a (stable)
configuration having also p < pc but ðcos/; sin/Þ ¼ 	ðG;HÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
. Then, by the same reasoning,

cos/ < 0 ) / 2 ½	p;	p=2� [ ðp=2; pÞ. Thus, among configurations having p < pc, unstable ones are
characterized by the fact that they have / 2 ð	p=2; p=2Þ. Since configurations having p > pc are stable,
unstable configurations are completely characterized, among all possible ones, by the fact that they have both
p < pc and / 2 ð	p=2; p=2Þ; that is, their wavelength is larger than the critical one (k > kc) and they are
closer to a symmetric configuration (/ ¼ 0, Fig. 7(a)) than to an antisymmetric one (/ ¼ 	p, Fig. 7(b)). In
more discursive terms:

• If the configuration of the front is closer to a symmetric one than to an antisymmetric one, stability pre-
vails for wavelengths smaller than the critical value and instability for wavelengths greater than it. This find-
ing is similar to those of Leblond et al. (1996) in pure mode 1, Gao and Rice (1986) and Gao (1988) for
half-plane and penny-shaped cracks in mode 1 and 2þ 3, and Lazarus and Leblond (1998) for interface
half-plane cracks in mode 1þ 2þ 3.

• If the configuration of the front is closer to an antisymmetric one than to a symmetric one, stability pre-
vails for all wavelengths.

Two final remarks are in order. First, what was considered above was (just like in previous works of Gao
and Rice cited above) the question of stability versus perturbations of fixed, prescribed wavelength. One
may also raise the question of stability versus arbitrary perturbations. In this respect, the straight config-
uration of the front is inherently unstable, since whatever the crack width, any perturbation having
pþ ¼ p	, aþ ¼ a	, ðcos/; sin/Þ ¼ ðG;HÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
and k > kc is bound to develop in time, as discussed

above.
Second, in the case of pure mode 1, for the same geometrical configuration, Leblond et al. (1996) have

studied the stability problem without any restrictions on a� and /, thus in the absence of coincidence of the
extrema of daðz�Þ and dGðz�Þ. It is probably possible to extend their approach to mixed mode 2þ 3. But
the study is then much more involved, and furthermore feasible only for fatigue or subcritical propagation
laws but not for brittle fracture. These were the two reasons for considering only a simple special case here,
leaving the extension of Leblond et al. (1996)’s study to mode 2þ 3 for future work.

6. Conclusions and perspectives

It has been shown that the only non-trivial bifurcated mode has the same amplitude and wavelength kc
on both parts of the front. However, for mixed mode 2þ 3 loading conditions, there is a ‘‘phase difference’’
/c between the configurations of the two parts of the front depending upon the ratio of the initial mode 2
and 3 SIF. In contrast, in pure mode 2 or 3, the bifurcated mode is symmetric with respect to the central
axis Oz of the crack.
The stability problem of the rectilinear configuration of the crack front has been studied only for some

simple, special wavy perturbations for which the extrema of the perturbation and the energy release rate
coincide. It has been shown that instability prevails for wavelengths larger than the critical one kc if the
configuration of the front is close to a symmetric one and stability in the other cases, in particular if the
configuration of the front is close to an antisymmetric one.
The wavy bifurcated configuration of the front may recall, although the problem is not of same nature,

the telephone cord blisters appearing in thin films, observed for instance by Gille and Rau (1984) or
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Thouless (1993). But the fore and rear parts of the front of the blister are in an antisymmetric mode and
cannot therefore correspond to our bifurcated mode or instability domain.
This work is liable to extensions along three lines:
(1) The first one would be to discuss stability versus wavy perturbations of fixed wavelength without

any restrictive condition ensuring coincidence of their extrema and those of the energy release rate. This
seems feasible through extension of the work of Leblond et al. (1996) pertaining to the same geomet-
ric configuration but pure mode 1 conditions, to general loading conditions. However, this implies drop-
ping the brittle-type criterion G ¼ Gc and adopting some subcritical growth or fatigue propagation law
instead.
(2) The second one would be to consider the more general stability problem against arbitrary pertur-

bations. The purpose here would be to study the evolution of the crack front toward ‘‘smoothness’’, or
contrarily ‘‘disorder’’. This could be achieved by taking the Fourier transform of the perturbation so as to
reduce the problem to the study of the evolution of sinusoidal perturbations, following the line just sket-
ched. The previous study suggests that Fourier components of wavelength longer than kc will grow and the
other ones decrease; that is, perturbations of short wavelength will disappear and only those of long
wavelength will develop. But it is difficult to say a priori if the resulting crack front will become more
‘‘smooth’’ or more ‘‘disordered’’. Clearly, these ambiguous notions need to be given an accurate mathe-
matical definition before any discussion is possible.
(3) The third one is related to non-linear effects disregarded in the first-order perturbation analysis. More

specifically, the following problem arises. The critical wavelength evidenced here is proportional to the
width of the crack. Thus, let us consider a wavy perturbation of the crack front of wavelength larger than
the critical one. Then the amplitude of the oscillations will grow, but the width of the crack and therefore
the critical wavelength will do just the same. Therefore the wavelength of the perturbation will become
smaller than the critical one, and stability again prevail, after a certain distance of propagation. But if this
distance is too large, the first-order perturbation method used in this paper may become invalid and non-
linear effects important. It is improbable that this topic can be addressed analytically, but it may be handled
using numerical methods (see for instance, Bower and Ortiz (1990) and Lazarus (1999)).
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