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Abstract

One considers a planar tunnel-crack embedded in an infinite isotropic brittle solid and loaded in mode 2 + 3 through
some uniform shear remote loading. The crack front is slightly perturbed within the crack plane, from its rectilinear
configuration. Part I of this work investigates the two following questions: Is there a wavy “bifurcated” configuration of
the front for which the energy release rate is uniform along it? Will any given perturbation decay or grow during
propagation? To address these problems, the distribution of the stress intensity factors (SIF) and the energy release rate
along the perturbed front is derived using Bueckner—Rice’s weight function theory. A “critical” sinusoidal bifurcated
configuration of the front is found; both its wavelength and the “phase difference” between the fore and rear parts of
the front depend upon the ratio of the initial (prior to perturbation of the front) mode 2 and 3 SIF. Also, it is shown
that the straight configuration of the front is stable versus perturbations with wavelength smaller than the critical one
but unstable versus perturbations with wavelength larger than it. This conclusion is similar to those derived by Gao and
Rice and the authors for analogous problems.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider a plane crack with arbitrary contour &, embedded in an arbitrary isotropic elastic body Q. Let
M denote the generic point of Z. If the crack advances, under constant loading, by a small distance 6a(M)
within the plane in the direction perpendicular to the front #, the variations dK,,(M), m = 1, 2, 3 of the
stress intensity factors (SIF) at point M are given, to first order in the perturbation, by the following
formulae:
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dda(M)

0K, (M) = [8K,i(M)]500)=sa(ar) + NonnKn (M) + PV/ Zn(Q; M, MK, (M")[8a(M') — da(M)]ds,
T

(1)
where s, s’ denote the curvilinear abscissae along the front of points M and M’ respectively, and Einstein’s
implicit summation convention is employed for the index n = 1,2, 3. In these equations, the K, (M) are the
initial SIF (prior to perturbation of the crack front). The [8K,, (M )]5,1)=sn) are the values of the 8K, (M)
for a uniform advance equal to da(M) (da(M’') = da(M),YM' € ). The N, are the components of a
universal (geometry-independent) operator. They are given by (other components being zero):

2 2(1—v

R @)
where v denotes Poisson’s ratio. The Z,,(Q; M, M’) are the components of a non-universal (geometry de-
pendent, whence the argument “Q’’) operator Z called the fundamental kernel in the sequel, since it appears
as the kernel of the principal value (PV) integral. Some general properties of these functions are as follows:

Z( QM M) = Z,,(Q;M', M), (m,n) = (1,1);(2,2);(3,3);(1,2),

Nyy = —

3
Zn( QM M) = (1 =V Z3(QM M), n=1;2, (3)
1
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where D(M, M’) denotes the Cartesian distance between the points M and M’. Note that Eq. (4) warrant
that the integral in Eq. (1) makes sense as a Cauchy principal value.

Eq. (1) was first established by Gao and Rice for various particular cases: the half-plane crack in mode 1
(Rice, 1985) and 1 + 2 + 3 (Gao and Rice, 1986), the circular connection in mode 1 (Gao and Rice, 1987a),
the penny-shaped crack in mode 1 (Gao and Rice, 1987b) and 1 + 2 + 3 (Gao, 1988). In all these papers, the
fundamental kernel did not appear in the generic name Z but in an explicit form depending on the con-
figuration studied. Eq. (1) was then extended by Rice (1989) and Nazarov (1989) to arbitrary planar crack
shapes in mode 1, and finally by Mouchrif (1994) and Leblond et al. (1999) to cracks of completely ar-
bitrary, non-planar shapes including possible kink angles and arbitrary combinations of modes. In these
more general cases, since the fundamental kernel depends on the geometry which was supposed to be more
or less arbitrary, it appeared under a generic form; Z is the notation used in Leblond et al. (1999). The
values of the N,,, given by (2) can be deduced from the works of Rice (1985), Gao and Rice (1986, 1987a,b)
and Gao (1988). Finally, properties (3) and (4) were proved for arbitrary plane cracks loaded in pure mode
1 by both Rice (1989) and Nazarov (1989), and for arbitrary curved crack geometries and mixed mode
conditions by Mouchrif (1994) and Leblond et al. (1999). All these works heavily relied on the use of
Bueckner—Rice’s weight-function theory (Bueckner, 1970; Rice, 1972; Rice, 1985).

In all the above-mentioned special cases, the problems of configurational bifurcation and stability of the
crack front during in-plane propagation, under uniform remote loading, could be addressed by using
the explicit expression of Z in Eq. (1) to calculate the energy release rate along a slightly perturbed front.
The bifurcation problem was the following one: is there, in addition to the trivial, initial (straight or circular)
configuration of the crack front, some non-trivial, wavy configuration for which the energy release rate
is still uniform? The stability problem was as follows: if the crack front is slightly perturbed within the crack
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plane, will the perturbation decay or increase as propagation proceeds? This issue could be addressed by
considering that the perturbation decayed if the energy release rate was lowest at the most advanced parts
of the crack front, and that it grew if the opposite held true.

For half-plane cracks and internal circular cracks under mixed mode loadings, and for circular con-
nections under mode 1 loading, Rice (1985), Gao and Rice (1986, 1987a,b) and Gao (1988) have shown that
there is a sinusoidal bifurcated configuration of “critical” wavelength A., and that stability prevails for
perturbations of wavelength smaller than A. and instability for wavelengths larger than it. An analogous
result has been established for interface half-plane cracks by Lazarus and Leblond (1998). However, for half-
plane cracks, as pointed out by Gao and Rice (1986) because of the lack of a characteristic lengthscale in the
problem, the somewhat deceiving conclusion is only that “planar crack growth should be configurationally
stable to perturbations involving wavelengths that are small compared to overall body or crack dimensions”’.
Leblond et al. (1996) have introduced a characteristic lengthscale by studying the tunnel-crack under mode 1
loading. They have shown that the critical wavelength /. is a characteristic multiple of the crack width and
that the critical bifurcated configuration is symmetric with respect to the middle axis of the crack.

The aim of Part I of this work is to consider the same bifurcation and stability problems for the tunnel-
crack as Leblond et al. (1996), but for mixed mode (2 + 3) shear loadings. Propagation is assumed to be
coplanar; this is reasonable provided that the crack is channeled along a planar surface of low fracture
resistance, which can be the case for instance for a geological fault. Also, propagation is considered to be
governed by the local energy release rate, the critical value of which is assumed to be independent of mode
combination. Again, this is reasonable (Rice, private communication) for coplanar propagation along a
weak surface, since energy dissipation occurs through the same physical mechanisms (shear and friction) in
both modes 2 and 3.

Bifurcation and stability issues of course depend on the geometry considered. Therefore some general
properties of the operator Z for a tunnel-crack, are needed as a prerequisite. These properties are ex-
pounded in Section 2. They allow us to derive, in Section 3, an expression of the variation of the energy
release rate due to a small wavy perturbation of the crack front that forms the basis of our discussion of
bifurcation and stability problems. In Section 4, it is then shown that there is a critical, sinusoidal bifur-
cated configuration of the front. Its wavelength is a multiple of the width of the crack and depends upon the
ratio of the mode 2 and 3 initial SIF (prior to perturbation of the front). Also, the bifurcated configuration
is symmetric with respect to the middle axis of the crack only for initial conditions of pure mode 2 or 3; for
mixed mode conditions, there is a “phase difference’ between the bifurcated configurations of the fore and
rear parts of the crack front. The stability issue is addressed, in Section 5, only in some simple, special cases
where the extrema of the perturbation and the energy release rate coincide. It is shown that in the most
interesting case, stability prevails for perturbations of wavelength smaller than the critical one.

It should be noticed that a significant part of the analysis of bifurcation and stability can be carried out
using only the properties of the fundamental kernel Z expounded in Section 2, that is without explicitly
knowing its components. However, such an explicit knowledge is of course necessary for a fully quanti-
tative analysis. But the calculation of Z is long and complex; for reasons of compactness of the present
paper, we shall therefore merely accept its results here and postpone its detailed presentation to Part II.

2. General properties of the fundamental kernel Z
2.1. Definitions and notations
The situation considered is depicted in Fig. 1. The crack lies on the plane y = 0 and the fore and rear

parts of the front are parallel straight lines of equation (x = @) and (x = —a) respectively. The position of a
point M of the front is specified through the Cartesian coordinate z*, where the upper index indicates



4424 V. Lazarus, J.-B. Leblond | International Journal of Solids and Structures 39 (2002) 4421-4436

Fig. 1. Tunnel-crack of width 2a.

whether the point considered belongs to the fore (x = a) or rear part (x = —a) of the front. The SIF at a
point M of the front are defined with respect to the local set of axes (x,y,z) if M belongs to the line (x = a)
and (—x, —y, z) if it belongs to the line (x = —a).

The only geometric parameter in the problem is the half-width « of the crack; it follows that the influence
of the argument “Q” upon the fundamental kernel Z(Q;M,M’) in fact reduces to a dependence of this
operator upon a. Furthermore, the problem is invariant in the direction z of the crack front and simple
dimensional considerations in Eq. (1) show that Z(Q; M, M') = Z(a;z*,7*) is positively homogeneous of
degree —2 with respect to its three arguments. Combining these features with the obvious symmetry with
respect to the central axis Oz, one concludes that the fundamental kernel can be written in the following
form:

Z(a;z",2%)=Z(a;z7,27) = f((z’,—iz)éa)’ 5
(z —z)
Z(a;z",Z7) =ZL(a;z,2") = g((z’;—zz)/a)v ©)

where, in virtue of Eq. (4), the components of operators f and g are bounded for z/ — z and verify the
following properties:

lim fi1(¢ ~2)/a) = 5.

. 2-3
E}Efzz((zl —z)/a) = W_v\))a

. , 2
lim (2~ 2)/a) = 33

lim /,,,(( ~2)/a) =0, m#n.

Another basic property of f and g is that:

Jo=f=fs=fu=gn=8g1=g3=g1=0. (8)
This is because, as is well-known, tensile and shear problems are uncoupled for a planar crack with an
arbitrary contour in an infinite body; that is, if K, = 0 and K3 = 0 (tensile problem), the variations 6K, and
0K3 are zero when the crack propagates within its plane; and similarly if K; = 0 (shear problem), 6K; = 0.
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Furthermore, elementary considerations of symmetry with respect to the plane z = 0 show that fi;, /2,
f33, €11, €22, €33 are even, and f33, 223, f32 and g3, are odd functions. Egs. (3), (5) and (6) then imply that (with
u=(Z —z)/a):

fa(u) = (1= v)foa(—u) = (1 —v)f23(u),

gn(u) = (1 = v)gan(—u) = —(1 — v)gx(u).
Therefore, the fundamental kernel Z is entirely determined by the eight components 11, 22, 33, 23 of the
operators f and g.

©)

2.2. Expressions of the 6K, m = 2,3 in terms of fand g

As already mentioned, for the tunnel-crack under shear loading, 6K; = 0. Furthermore, for m = 2, 3,
with the notations (5) and (6) and because of properties (8) and (9), the fundamental Eq. (1) reads for a
point M*(z") belonging to the line (x = a):

6K2(Z ) [SKz( )] (2'*)=da(z+) _%[Q(ZJF)%(ZjL)

—i—PV/m { 22<5 ;Z>1<2(z’+) +f23(2,;z>1(3(z/*)} —6“(2';) - 5‘2’(2+) dz

x 72
+ /:0 {gn(ZI;Z)Kz(Z/) +g23(2/;2)[(3(2')} M dz/, (10)
3K) = 3K i g >K2< pEadel
+ PV/, { z3< ) (I=v)f2s (Z/ Z>K2 (ZH)} _Sa(z’(;) __—Za)czl(ﬁ) dZ

+ /_W {gzs (%)Ks(zl) —(1—v)gxs (j;Z)Kz(Z')] M dz. (1)

50 a

The values of 6K, (z~) and 8K;(z™), for a point M~ (z~) belonging to the line (x = —a), are given by the same
expressions with the obvious substitutions z+ — z7, Z* — Z7F.

3. Perturbation of the tunnel-crack under uniform remote shear loading

Let the tunnel-crack be subjected to some uniform remote plane (7,) and antiplane (,) shear loading so
that Cauchy stress tensor at infinity reads 6., = 7,(¢, ® &, + & ® €,) + 1a(e, ® €, + €. ® ¢,). Then the
SIF, prior to any perturbation of the front, are given by:

Ki(z")=0; Ky(z%)=tpv/ma=Ky; Ki(z')=tvVma=Ky; Ki(z7)=—1t.v/ma=—-Kj =Kj;.

(12)
The variation of the SIF will be studied for three types of perturbation of the front: translation, rotation
and sinusoidal undulation (Fig. 2). The study of the translation will serve to simplify (in the case of a
uniform remote loading), the expressions (10) and (11) of 8K,(z") and 8K;(z"). The study of the rotation
will allow the calculation of some integrals involving operators f and g. These integrals are given here
although they will be needed only in Part 11, because the reasoning is similar to that for the translation. The
study of the sinusoidal undulation is a necessary prerequisite for that of the bifurcation and stability
problems.
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Fig. 2. In-plane perturbations of the tunnel-crack under uniform remote shear loading. (a) Translation of both parts of the front. (b)
Translation of the rear part of the front. (¢c) Rotation about the Oy axis. (d) Wavy front.

3.1. Translation of the front

If both parts of the front move by a uniform amount da as in Fig. 2(a), the new SIF are those of a tunnel-
crack of width 2(a 4 da) subjected to the remote loading 6... Hence to first order in da/a:

da
8K, (z* )]6a(z’i =Ky
2861 5 (13)
a _
[8K3(Z )]cia(z’i K?jrz ) [6K3( )]Sa K3 2a°

If now the sole rear part of the front moves by an amount da as in Fig. 2(b), the new SIF are those of a
tunnel-crack of width 2a + da subjected to the remote loading 6. Thus 8K,(z*) = (K»8a)/(4a) and
8K3(z*) = (Ki8a)/(4a). Egs. (10) and (11) then yield:

/_ﬂC gn(u)du = — /_HC gx(u)du = ‘l‘, /_+OC g2 (u)du = 0. (14)

oo o0 o0

The last relation was obvious a priori since g»3 is odd.
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By using Eqgs. (13) and (14), the relations (10) and (11) can be rewritten in the following slightly sim-
plified form (for a uniform remote loading):

SKa(zH) = IZZ da(z") Zi ddBZa( +)+K2PV/ °Cf22< >8a( - )—8421(2+) dz

—50 z' — 2)

+K/ fz%( > Z_ZS)Z( )dZ’—i-Kz/ojgzz(Z/;Z)%dZ’

+K;[ ( ) , (15)
—a —v)Kz/:OfB(ZI;Z) SG(Z;)__ZS)Z(Z )d£+K / g33<z —z> Sa;'_) a7
e [ Ce(F) M e (16

where the “PV” symbols have been canceled in the integrals involving f>; since this function is odd.
The expressions of 8K>(z~) and 8K3(z ™) are similar with the substitutions z* — z~, Z* — zF, K — K;.

3.2. Rotation of the front

Let us suppose that the perturbation is a rotation of both parts of the front about e, as in Fig. 2(c) so
that da(z*) = 860.z and da(z~) = —d0.z, |80| < 1. Then to first order in 80, the new SIF are those of a
tunnel-crack of width 2a subjected to the uniform remote loading (1, — 80.7,)(e, ® e, + e, ® ) +
(ta +80.7,)(e, ® e, + &, ® e,) where e, and e, are defined in Fig. 2(c). Thus 8K,(z*) = —80.K; and
dK;(z*) = +£80.K,. Relations (15) and (16) then yield a system of two equations in the two unknown in-

tegrals [ fo3(u)(du/u) and [ ugy(u)du, the solution of which reads:

e du v?
/_oo S = = e Iy (17)
/O:Ougzg,(u)duzzav_v). (18)

3.3. Wavy perturbation of the crack front
Let us now suppose that, as in Fig. 2(d):

da(z") = ot cos(ktz+ ¢™)
da(z") = o cos(kz+¢") (19)

ot o
u,\,u<< 1.
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Then, by substituting Eq. (19) in (15) and (16) and using the notation
Pt =kta, (20)

(p*, p~ are “reduced”, dimensionless wavevectors), one finds to first order in (¢*/a), after a lengthy but
straightforward calculation:

() = 2 cos(k*z + ¢ Kaalp) + o sink'z 4 K F(p) L cos(kz 4 ¢ )Kanl)

+ % sin(k™z+ ¢ K518, (p7), @)

dK3(zh) = % cos(k*z + ¢+)K3+f33 (pt) — (1 —v) % sin(kz + ¢ )Kaifos(p")
+ % cos(k™z+ ¢ )K; &(p7) — (1 —v) % sin(k™z + ¢ )Kaigy(p), (22)

the expressions of 8K,(z~) and 8K3(z~) being given by the same formulae with the obvious substitutions
+ < F for the superscripts of «, k, p, ¢ and K;. In these expressions, the functions f,,, are defined as:

lpu_l

ﬁm@>ff+PV/" e :7+2/“ Sonla) P L, () = (2,2);3,3),

e — s1n pu

du du,

Fup) =

1P+PV/ Sos(u 1P+21/ S3(u

(23)

(where use has been made of the parity properties of the f,,). Also, the functions g,, are the Fourier
transforms of the g, defined as:

+00
&Mh/ ()™ du,

o0

@mwu/m&mMmmwmmm—@m@m (24)
N 0

“+00
&x(p) = 2i/ g2 (u) sin pudu,
0

(where use has been made of the parity properties of the g,.,).
Notice that fo, f33, 8, £33, 1f23, 1823 are real so that the expressions (21) and (22) of 8K,(z*) and 8K;(z*)
are real in spite of the presence of the imaginary number i.

4. Study of the bifurcation problem

Any sinusoidal perturbation of the crack front may be written, for a suitable choice of the origin, in the
form (19) with ¢* =0, ¢~ = ¢ € [-n,n), and at, o, p*, p~ > 0. The bifurcation problem consists in
looking whether there are some constants (¢, a~, p*, p~, ¢) for which the variation of energy release rate 6%
due to the perturbation (19) vanishes. (In fact, what is really to be investigated is 69 — 6%, where ¥, denotes
the critical value of ; but this is equivalent to studying 6% since % is assumed to be a constant, independent
of mode combination). Such a set of variables («*, o=, p*, p~, ¢) will be called a bifurcation mode.
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4.1. Expression of the variation of the energy release rate

Expanding Irwin’s formula to first order in (o¢*/a), one finds that the variation of the energy release rate
due to the perturbation (19) is:

1 —?

1
Ky8K(z5) + —— K 8K3(2%) | (25)

+
:2
39 (%) T

where E is Young’s modulus and 8K,(z*) and 8K;(z%) are given by Egs. (21) and (22). Hence, substituting 0
for ¢" and ¢ for ¢~ in these equations, one finds that

39 (%) = 21—Tv2 %2 {a"F(p")cos(k™z) + o~ [G(p~)cos ¢ + H(p~ ) sin ¢] cos(k z)
+ o [H(p~)cos¢p — G(p~)sinP]sin(k™z)}, (26)
3%9(z7) =2 ! ;jvz Kzzz{ac*F(p’) cos (k" z+ ¢)+ a"[G(p*)cos ¢ + H(p") sinp]cos(k*z + ¢)
+of[—H(p")cos¢p + G(p*)sing]sin(k™z + ¢)}. (27)

In these expressions F(p) = F(p, K5 /K,), G(p) = G(p, K5 /K>), H(p) = H(p, K5 /K>) are the quantities given
by:

Fp) = Folp) + 7 g Falo)
G(p) = £2(p) 1 gr (0 (28)

H(p) = —Zi%gm.

It was noticed by Gao and Rice (1986), Gao (1988), Lazarus and Leblond (1998) that the extrema of the
perturbation of the front and of the energy release rate coincide for a half-plane or a penny-shaped crack in
an homogeneous body, and for an interface half-plane crack. One could therefore speculate that this was a
“general property”’. However, since the terms proportional to sin(k z) and sin(k™z + ¢) do not vanish in
the expressions (26) and (27) of 3%(z*), this property does not hold for the tunnel-crack.

4.2. Graphs of functions f, f33, &2, 8130 23
Knowledge of the functions f,, £33, &2, £33, &3 NoW becomes necessary to pursue the discussion. For the
sake of shortness of the present paper, the rather involved calculation of these functions is postponed to

Part IT and we shall only give here the results obtained, for the value v = 0.3 of Poisson’s ratio, in the form
of graphs. (see Figs. 3 ! and 4.)

4.3. Case where p™ # p~

If p™ # p~, for 8%(z*) to be zero for all z* and z~, the terms proportional to cos(k*z), cos(k™z), sin(k~z)
in the expression (26) of §%(z"), and those proportional to cos(k™z + ¢), cos(k*z + ¢), sin(kz + ¢) in the

! Since f3 does not appear in expressions (26) and (27) for 3%(z*), this function is not given in Fig. 3.
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IS

expression (27) of %(z~) must be individually zero. Since we are looking for non-trivial solutions, one of
the coefficients o™, o=, say a*, must be non-zero. The preceding conditions then implies:

F(p')=0; G(p")cosp+H(p")sing =0; H(p")cosd — G(p")sing =0
and thus F(p') = G(p") = H(p") = 0. Now it is clear from definitions (28) and Figs. 3 and 4 that F(p*)

only vanishes for some p* # 0 whereas H(p') only vanishes for p* = 0. Thus these conditions cannot be
satisfied for a single p™. Hence:

There is no bifurcation mode with p* # p~. (29)
4.4. Case where pt =p~ =p
If p* = p~ = p, for 8%(z*) to be zero for all z* and z~, the terms proportional to cos(kz) and sin(kz) in

the expression of 6%(z"), and those proportional to cos(kz + ¢) and sin(kz + ¢) in the expression of 6%(z)
must be zero. This implies that:
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«F(p) + o (G(p)cosdp + H(p)sinp) =0
« F(p) + ot (G(p)cosdp + H(p)singp) =0
H(p)cos¢ — G(p)sing = 0.

The first two equations imply that a* /o~ = o~ /o = ot = +o~. Since we have chosen o" and o~ to be
positive:

ot =0 =a#0
F(p)+ G(p)cos¢ + H(p)sing =0 (30)
H(p)cos¢p — G(p)sin¢p = 0.
Using second and third equations of (30), one gets cos¢ = —F(p)G(p)/(G*(p) + H*(p)), sin¢ =
—F(p)H(p)/(G*(p) + H*(p)). Use of the relation cos? ¢ + sin® ¢) = 1 then yields

{F<p> — +/C0p) + B () a1)
cos§ = ~G(p)/F(p), sind = —H(p)/F(p).

For a given ratio K /K, first relation of (31) is an equation on p the solution of which represents the
“critical reduced wavevector”. It can be solved numerically for each value of K3 /K, using values of the
functions £,,, and g,,, given in Figs. 3 and 4. The second equation of Eq. (31) then define the corresponding
“critical phase difference” between the configurations of the fore and rear parts of the front.

Since f32(0) = f33(0) = §(0) = —55(0) = 1/4 and £,,(0) = 0 (see Egs. (14), (23) and (24)), F(0) =
G(0) = (1 + (1/(1 —v))(K5?/K3))/4 and H(0) = 0 (see Eq. (28)). Therefore, if one chooses the sign + in
first equation of (31), one finds that p = 0, ¢ = —= is a solution. This is a trivial bifurcation mode which
merely corresponds to some translation of the crack in the x-direction. One can check numerically that this
is the only one for the choice of the sign + in first equation of (31).

However, if one chooses the sign —, the resolution gives another unique, non-zero solution p. and a
corresponding angle ¢,, which define a non-trivial bifurcation mode. Hence there is a single such mode
defined by the following equations:

{F(Pc) = GZ(Pc) +H2(pc) (32)
cos ¢, = —G(Pc)/F(Pc)> sin ¢, = _H(pc)/F(pc)'

10

0.01 0.1 1 10 100
Ky /K,

Fig. 5. Critical reduced wavelength versus the ratio of the initial SIF.
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Fig. 6. Critical phase difference versus the ratio of the initial SIF.

Tp
le
x
z
(a) Symmetric mode (b) Antisymmetric mode

Fig. 7. Symmetric and antisymmetric modes.

Figs. 5 and 6 2 represent the “critical reduced wavelength” A./a = 21/p. and the critical phase difference ¢,
of the bifurcated mode as functions of K3 /K, for v=10.3. KJ' /K, is assumed here to be positive; it is
obvious that if it changes sign, 4. remains unchanged and ¢, changes sign. One sees that the critical
wavelength is larger in pure mode 3 than in pure mode 2. Also, the critical phase difference vanishes in pure
mode 2 and mode 3, that is, the bifurcated configuration becomes symmetric with respect to the middle axis
Oz of the crack in these cases (see Fig. 7(a)). It is recalled that the bifurcation mode was also found to be
symmetric for a pure mode 1 loading (Leblond et al., 1996). Moreover ¢, € (—n/2,n/2), hence the bi-
furcated mode is always closer to a symmetric configuration (¢p = 0, Fig. 7(a)) than to an antisymmetric one
(¢ = —m=, Fig. 7(b)).

2 Note that, in spite of appearances, the curve in Fig. 6 is not symmetric with respect to the vertical line K3 /K> = 1; for instance
¢, ~=7.89" for Ki /K> = 0.1 and ¢ ~ 7.38° for K5 /K> = 10.
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5. Study of the stability problem

The question here is as follows: if the crack front is slightly perturbed within the crack plane, will the
perturbation increase (instability) or decay (stability) in time? Equivalently, will the crack front depart
more and more from straightness or tend to again become straight? But since not only the amplitude but
also the shape of the perturbation change during propagation, the very notions of “increase’ and ““decay”
of the perturbation are ambiguous and prone to problems of definition, so that the stability issue is
complex.

In fact, we shall deal with it only in a special case for which the discussion becomes very easy and in line
with previous ones of Gao and Rice cited above. This case corresponds to wavy perturbations with
pt=p =p,a" =o =oand ¢ given by third equation of (30). Indeed the terms proportional to sin(kz)
and sin(kz + ¢) in the expressions (26) and (27) of 8%(z") and 6%(z ") then vanish so that the extrema of
89 (z") coincide with those of da(zt), and similarly for those of 6%(z") and Sa(z~). One then simply gets
stability if the maxima of 6%(z") and %(z~) correspond to the minima of da(z") and da(z~), and instability
if they correspond to the maxima of da(z*) and da(z™). This holds true whatever the propagation law
governed by the energy release rate provided that it is independent of mode combination, and in particular
for brittle fracture governed by the criterion 4 = %, if %, is independent of K /K.

Stability then prevails if the cofactors of cos(kz) and cos(kz + ¢) in the expressions of 8%(z*) and 8%(z™)
are negative :

Stability <= S=F 4+ Gcos¢p + Hsing <0, tan¢ =H/G. (33)
Now,

tan ¢ = H/G = (cos ¢, sin ¢) = +(G, H)/\/G> + H*
= F+Geos¢+ Hsing = F £ /G + H2.

Therefore the stability condition (33) may be written as follows:

H
§=F+VG+H <0 and <cos¢’5in¢):¢%

Stability < ¢ or (34)

: (G,H)
S=F—+VG*+ H? <0 and (cos ¢,sin¢) = ———=—.
v (cos p.sing) =~

Thus we should distinguish between the cases (cos¢,sin¢) = (G,H)/vV/G*+ H?> and (cos ¢,sin ¢) =
—(G,H)/VG*+ H*

¢ The more interesting case corresponds to (cos ¢, sin ¢) = (G, H)//G*> + H?. Then, for each ratio K3 /K,,
using the values of the functions f,,, and g,,, given in Figs. 3 and 4, one can check that S is positive for
p < p. and negative for p > p.: for instance, for p=0, F =G = (1 + (1/(1 —v))(K3?/K?))/4 > 0 and
H =10 (see above) so that S=F+ G >0, and for p — +o0, F — —0c0, G— 0, H— 0, so that
S ~ F < 0; also for p = p., S = 0 by first equation of (32). Hence stability prevails for p > p..

¢ In the less interesting case where (cos ¢, sin ¢) = —(G,H)/vV'G?> + H?, S is negative for all ratios K} /K>
and values of p; for instance, for p=0, S=F -G =0, for p — +o00, S~ F <0, and for p =p,
S = —2v/G?* + H? < 0 by first equation of (32). Thus stability always prevails.

3 In these equations and the sequel, indications of dependence of functions F, G, H and S upon p are left out for the sake of
simplicity.
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Now consider an unstable configuration, having thus p < p. and (cos ¢,sin¢) = (G, H)/V/G* + H>.
Then A/a =2n/p > A./a = 2n/p. > 4.5 (see Fig. 5) = p < 1.4 = —g;; > 0 (see Fig. 4) = G > 0 (see second
equation of (28) and Fig. 4) = cos¢ > 0= ¢ € (—n/2,7/2). On the other hand, consider a (stable)
configuration having also p < p. but (cos ¢,sin¢) = —(G,H)/VG?> + H>. Then, by the same reasoning,
cosp <0 = ¢ €[—n,—n/2)U (n/2,n). Thus, among configurations having p < p., unstable ones are
characterized by the fact that they have ¢ € (—n/2,7/2). Since configurations having p > p. are stable,
unstable configurations are completely characterized, among all possible ones, by the fact that they have both
p < p.and ¢ € (—n/2,7/2); that is, their wavelength is larger than the critical one (/. > A.) and they are
closer to a symmetric configuration (¢ = 0, Fig. 7(a)) than to an antisymmetric one (¢ = —n, Fig. 7(b)). In
more discursive terms:

o If the configuration of the front is closer to a symmetric one than to an antisymmetric one, stability pre-
vails for wavelengths smaller than the critical value and instability for wavelengths greater than it. This find-
ing is similar to those of Leblond et al. (1996) in pure mode 1, Gao and Rice (1986) and Gao (1988) for
half-plane and penny-shaped cracks in mode 1 and 2 + 3, and Lazarus and Leblond (1998) for interface
half-plane cracks in mode 1+ 2 + 3.

o If the configuration of the front is closer to an antisymmetric one than to a symmetric one, stability pre-
vails for all wavelengths.

Two final remarks are in order. First, what was considered above was (just like in previous works of Gao
and Rice cited above) the question of stability versus perturbations of fixed, prescribed wavelength. One
may also raise the question of stability versus arbitrary perturbations. In this respect, the straight config-
uration of the front is inherently unstable, since whatever the crack width, any perturbation having
pr=p,a"=a, (cos¢,sing) = (G,H)/vVG>+ H? and 1 > /. is bound to develop in time, as discussed
above.

Second, in the case of pure mode 1, for the same geometrical configuration, Leblond et al. (1996) have
studied the stability problem without any restrictions on «* and ¢, thus in the absence of coincidence of the
extrema of da(z*) and 8%(z*). It is probably possible to extend their approach to mixed mode 2 + 3. But
the study is then much more involved, and furthermore feasible only for fatigue or subcritical propagation
laws but not for brittle fracture. These were the two reasons for considering only a simple special case here,
leaving the extension of Leblond et al. (1996)’s study to mode 2 + 3 for future work.

6. Conclusions and perspectives

It has been shown that the only non-trivial bifurcated mode has the same amplitude and wavelength /.
on both parts of the front. However, for mixed mode 2 + 3 loading conditions, there is a “phase difference”
¢, between the configurations of the two parts of the front depending upon the ratio of the initial mode 2
and 3 SIF. In contrast, in pure mode 2 or 3, the bifurcated mode is symmetric with respect to the central
axis Oz of the crack.

The stability problem of the rectilinear configuration of the crack front has been studied only for some
simple, special wavy perturbations for which the extrema of the perturbation and the energy release rate
coincide. It has been shown that instability prevails for wavelengths larger than the critical one A, if the
configuration of the front is close to a symmetric one and stability in the other cases, in particular if the
configuration of the front is close to an antisymmetric one.

The wavy bifurcated configuration of the front may recall, although the problem is not of same nature,
the telephone cord blisters appearing in thin films, observed for instance by Gille and Rau (1984) or
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Thouless (1993). But the fore and rear parts of the front of the blister are in an antisymmetric mode and
cannot therefore correspond to our bifurcated mode or instability domain.

This work is liable to extensions along three lines:

(1) The first one would be to discuss stability versus wavy perturbations of fixed wavelength without
any restrictive condition ensuring coincidence of their extrema and those of the energy release rate. This
seems feasible through extension of the work of Leblond et al. (1996) pertaining to the same geomet-
ric configuration but pure mode 1 conditions, to general loading conditions. However, this implies drop-
ping the brittle-type criterion ¥ = %, and adopting some subcritical growth or fatigue propagation law
instead.

(2) The second one would be to consider the more general stability problem against arbitrary pertur-
bations. The purpose here would be to study the evolution of the crack front toward “smoothness”, or
contrarily “disorder”. This could be achieved by taking the Fourier transform of the perturbation so as to
reduce the problem to the study of the evolution of sinusoidal perturbations, following the line just sket-
ched. The previous study suggests that Fourier components of wavelength longer than A, will grow and the
other ones decrease; that is, perturbations of short wavelength will disappear and only those of long
wavelength will develop. But it is difficult to say a priori if the resulting crack front will become more
“smooth” or more “disordered”. Clearly, these ambiguous notions need to be given an accurate mathe-
matical definition before any discussion is possible.

(3) The third one is related to non-linear effects disregarded in the first-order perturbation analysis. More
specifically, the following problem arises. The critical wavelength evidenced here is proportional to the
width of the crack. Thus, let us consider a wavy perturbation of the crack front of wavelength larger than
the critical one. Then the amplitude of the oscillations will grow, but the width of the crack and therefore
the critical wavelength will do just the same. Therefore the wavelength of the perturbation will become
smaller than the critical one, and stability again prevail, after a certain distance of propagation. But if this
distance is too large, the first-order perturbation method used in this paper may become invalid and non-
linear effects important. It is improbable that this topic can be addressed analytically, but it may be handled
using numerical methods (see for instance, Bower and Ortiz (1990) and Lazarus (1999)).
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